Senin, 16 Januari 2012

LESSON PLAN Fisika Internasiona


School                          : Senior High School
Class / Semester          : X  / Semester II
Subject                         : PHYSICS
Competency standards:
              3. Applying the principle of optical instruments.
Basic competencies     :
              3.2 Applying optical instruments in daily life.
Indicator                      :
Identify the application range of optical devices in everyday life.

A. Learning objectives
         Learners can :
1. Explain the usefulness of loops in everyday life.
2. Explain the usefulness of the microscope in everyday life.
3. Explain the usefulness of binoculars in everyday life.

B. Learning Materials
Optical instruments

C. Learning methods
1. Model          :           - Direct Instruction (DI)
- Cooperative Learning
2. Method       :           - Lectures
- Demonstration tool
- Forming a group

D. Activity Steps
a.      Activities Introduction
Motivation and apperception:
- The teacher opened the lesson with a prayer and attendance of students

Prerequisite knowledge:
- How is the working principle of the microscope?
- How is the working principle of the telescope?
- How is the working principle of the loop?

b.      Core Activities
Teacher guides learners in group formation.
Learners (guided by the teacher) discuss the application of various optical devices in everyday life.
Students in each group discuss the use of various optical devices (cameras, loops, microscopes, and telescopes) in everyday life.
Each group was asked to present the results of their discussion in front of the other groups.
Teachers respond to the discussion group of learners and provide real information.

c.        Closing activities
 • Teachers give awards to groups that have the performance and good cooperation.
  Learners (guided by the teacher) to make a summary discussion.
 • Teachers give homework in the form of exercises.

E. Learning Resources
a. High school physics book and (Esis)
b. Relevant reference books
c. Equipment and lab materials

F. Assessment of Learning Outcomes
a. Assessment Techniques :
- Test performance
- Assignment
b. Forms of Instrument :
- Test job picking products
- Task house
c. Examples of Instruments :
- Examples of chores
1.      Make a list of optical instruments and their use in everyday life.
2.      Make one optical instrument props from scrap materials.

   Head Master of
Senior High School                                                           Teacher Subject

Octavia Hevy Kristiana
NIP.                                                                              N
PM 09330277


 ( Remote Sensing )

A.    History
The concept of using photon pressure for propulsion was first proposed by Russian scientist Konstantin Tsiolkovsky in 1921, and in 1924 he and Friedrich Zander wrote of "using tremendous mirrors of very thin sheets" and "using the pressure of sunlight to attain cosmic velocities".
The term "solar sailing" was coined in the late 1950s and popularized by Arthur C. Clarke's short story "Sunjammer" in May 1964.
There are two sources of solar forces: radiation pressure, and solar wind. Radiation pressure is much stronger than wind pressure.

B.     Physics
In 1924, the Russian space engineer Friedrich Zander proposed that, since light provides a small amount of thrust, this effect could be used as a form of space propulsion requiring no fuel. Einstein proposed (and experiments confirm) that photons have a momentum p=E/c; therefore, each light photon absorbed by or reflecting from a surface exerts a small amount of radiation pressure. This results in forces of about 4.57x10−6 N/m2 for absorbing surfaces perpendicular to the radiation in Earth orbit, and a little less than twice as much if the radiation is reflected. This was proven experimentally by Russian physicist Pyotr Nikolaevich Lebedev in 1900,  and independently by Nichols and Hull at Dartmouth in 1901 using a Nichols radiometer.

Charged particles from the solar wind are able to cause geomagnetic storms which can knock out power grids on Earth, and point the tails of comets away from the Sun. The solar wind averages 6.7 billion tons per hour at 520 km/s with "slow" low energy coronal ejections reaching 400 km/s and "fast," higher energy ejections averaging 750 km/s. At the distance of the Earth, this results in average solar wind pressure of 3.4×10−9 N/m2, and is three orders of magnitude less than the photonic radiation pressure. Still the solar wind dominates many phenomena because its interaction cross section with gases and charged particles is about 109 times larger than that of the photons.

Both of these forces are small and decrease with the inverse square distance from the Sun. Even large sails produce minute acceleration, but over time, sails can build up considerable speeds.

Changing course trajectories can be accomplished in two ways. First, tilting the sail with respect to the light source changes the direction of acceleration because the force on a sail from reflected radiation and wind acts in a direction perpendicular to its surface. Smaller auxiliary vanes can be used to gently pull the main sail into its new position (see the vanes on the illustration labeled Cosmos 1, above). Second, gravity from a nearby mass, such as a star or planet, will alter the direction of a spaceship.

C.    Fly modes
1.      Escaping planetary orbit :
Sails orbit, and therefore do not need to hover or move directly toward or away from the Sun. Almost all missions would use the sail to change orbit, rather than thrusting directly away from a planet or the Sun. The sail is rotated slowly as the sail orbits around a planet so the thrust is in the direction of the orbital movement to move to a higher orbit or against it to move to a lower orbit. When an orbit is far enough away from a planet, the sail then begins similar maneuvers in orbit around the Sun.

2.      Beam propelled :
Most theoretical studies of interstellar missions with a solar sail plan to push the sail with a very large laser beam-powered propulsion direct impulse beam. The thrust vector (spatial vector) would therefore be away from the Sun and toward the target.
In theory a lightsail driven by a laser or other beam from Earth can be used to slow down a spacecraft approaching a distant star or planet, by detaching part of the sail and using it to focus the beam on the forward-facing surface of the rest of the sail. In practice, however, most of the slowing would happen while the two parts are at a great distance from each other, and that means that, to do that focusing, it would be necessary to give the detached part an accurate optical shape and orientation. This solution is also limited because the lasers used to accelerate or decelerate a sail ship could take years, decades, or centuries to reach the craft, depending on the distance.

D.    Limitations of solar sails
Solar sails do not work well, if at all, in low Earth orbit below about 800 km altitude due to erosion or air drag. Above that altitude they give very small accelerations that take months to build up to useful speeds. Solar sails have to be physically large, and payload size is often small. Deploying solar sails is also highly challenging to date.

E.     Sail materials
 NASA engineer Les Johnson views interstellar sail material :
The material developed for the Drexler solar sail was a thin aluminum film with a baseline thickness of 0.1 micrometres, to be fabricated by vapor deposition in a space-based system. Drexler used a similar process to prepare films on the ground. As anticipated, these films demonstrated adequate strength and robustness for handling in the laboratory and for use in space, but not for folding, launch, and deployment.

The most common material in current designs is aluminized 2 µm Kapton film. It resists the heat of a pass close to the Sun and still remains reasonably strong. The aluminium reflecting film is on the Sun side. The sails of Cosmos 1 were made of aluminized PET film (Mylar).

Research by Dr. Geoffrey Landis in 1998-9, funded by the NASA Institute for Advanced Concepts, showed that various materials such as alumina for laser lightsails and carbon fiber for microwave pushed lightsails were superior sail materials to the previously standard aluminium or Kapton films.

In 2000, Energy Science Laboratories developed a new carbon fiber material which might be useful for solar sails. The material is over 200 times thicker than conventional solar sail designs, but it is so porous that it has the same mass. The rigidity and durability of this material could make solar sails that are significantly sturdier than plastic films. The material could self-deploy and should withstand higher temperatures.
There has been some theoretical speculation about using molecular manufacturing techniques to create advanced, strong, hyper-light sail material, based on nanotube mesh weaves, where the weave "spaces" are less than half the wavelength of light impinging on the sail. While such materials have so far only been produced in laboratory conditions, and the means for manufacturing such material on an industrial scale are not yet available, such materials could mass less than 0.1 g/m², making them lighter than any current sail material by a factor of at least 30. For comparison, 5 micrometre thick Mylar sail material mass 7 g/m², aluminized Kapton films have a mass as much as 12 g/m², and Energy Science Laboratories' new carbon fiber material masses 3 g/m².

F.     Applications
1.      1. Satellites

Robert L. Forward pointed out that a solar sail could be used to modify the orbit of a satellite around the Earth. In the limit, a sail could be used to "hover" a satellite above one pole of the Earth. Spacecraft fitted with solar sails could also be placed in close orbits about the Sun that are stationary with respect to either the Sun or the Earth, a type of satellite named by Forward a statite. This is possible because the propulsion provided by the sail offsets the gravitational potential of the Sun. Such an orbit could be useful for studying the properties of the Sun over long durations.

Such a spacecraft could conceivably be placed directly over a pole of the Sun, and remain at that station for lengthy durations. Likewise a solar sail-equipped spacecraft could also remain on station nearly above the polar terminator of a planet such as the Earth by tilting the sail at the appropriate angle needed to just counteract the planet's gravity.

In his book, The Case for Mars, Robert Zubrin points out that the reflected sunlight from a large statite placed near the polar terminator of the planet Mars could be focussed on one of the Martian polar ice caps to significantly warm the planet's atmosphere. Such a statite could be made from asteroid material.

2.      2. Trajectory corrections

The MESSENGER probe en route to Mercury is using light pressure reacting against its solar panels to perform fine trajectory corrections.[43] By changing the angle of the solar panels relative to the Sun, the amount of solar radiation pressure can be varied to adjust the spacecraft trajectory more delicately than is possible with thrusters. Minor errors are greatly amplified by gravity assist maneuvers, so very small corrections before lead to large savings in propellant afterward.

3.      3. Interstellar flight

In the 1980s, Robert Forward proposed two beam-powered propulsion schemes using either lasers or masers to push giant sails to a significant fraction of the speed of light.

In The Flight of the Dragonfly, Forward described a light sail propelled by superlasers. As the starship neared its destination, the outer portion of the sail would detach. The outer sail would then refocus and reflect the lasers back onto a smaller, inner sail. This would provide braking thrust to stop the ship in the destination star system.

Both methods pose monumental engineering challenges. The lasers would have to operate for years continuously at gigawatt strength. Second, they would demand more energy than the Earth currently consumes. Third, Forward's own solution to the electrical problem requires enormous solar panel arrays to be built at or near the planet Mercury. Fourth, a planet-sized mirror or fresnel lens would be needed several dozen astronomical units from the Sun to keep the lasers focused on the sail. Fifth, the giant braking sail would have to act as a precision mirror to focus the braking beam onto the inner "deceleration" sail.

A potentially easier approach would be to use a maser to drive a "solar sail" composed of a mesh of wires with the same spacing as the wavelength of the microwaves, since the manipulation of microwave radiation is somewhat easier than the manipulation of visible light. The hypothetical "Starwisp" interstellar probe design would use a maser to drive it. Masers spread out more rapidly than optical lasers owing to their longer wavelength, and so would not have as long an effective range.

Masers could also be used to power a painted solar sail, a conventional sail coated with a layer of chemicals designed to evaporate when struck by microwave radiation. The momentum generated by this evaporation could significantly increase the thrust generated by solar sails, as a form of lightweight ablative laser propulsion.

To further focus the energy on a distant solar sail, designs have considered the use of a large zone plate. This would be placed at a location between the laser or maser and the spacecraft. The plate could then be propelled outward using the same energy source, thus maintaining its position so as to focus the energy on the solar sail.

Additionally, it has been theorized by da Vinci Project contributor T. Pesando that solar sail-utilizing spacecraft successful in interstellar travel could be used to carry their own zone plates or perhaps even masers to be deployed during flybys at nearby stars. Such an endeavor could allow future solar-sailed craft to effectively utilize focused energy from other stars rather than from the Earth or Sun, thus propelling them more swiftly through space and perhaps even to more distant stars. However, the potential of such a theory remains uncertain if not dubious due to the high-speed precision involved and possible payloads required.

Another more physically realistic approach would be to use the light from the home star to accelerate. The ship would first orbit continuously away around the home star until the appropriate starting velocity is reached, then the ship would begin its trip away from the system using the light from the star to keep accelerating. Beyond some distance, the ship would no longer receive enough light to accelerate it significantly, but would maintain its course due to inertia. When nearing the target star, the ship could turn its sails toward it and begin to orbit inward to decelerate. Additional forward and reverse thrust could be achieved with more conventional means of propulsion such as rockets.

Rabu, 26 Oktober 2011

Bagaimana Terjadinya Neutrino pada Peluruhan Beta ( Materi pada Pembelajaran Fisika INTI)

Pauli Mengemukakan bahwa sinar beta bukan hanya terdiri dari berkas elektron, tapi juga “ditemani” berkas partikel lain yang bermuatan listrik netral, memiliki spin ½, dan massanya sangat kecil, hampir nol.
Partikel baru ini oleh Pauli diberi nama “neutron kecil”. Dengan kehadirannya Neutron kecil, hukum kekekalan momentum sudut spin terselamatkan. Juga hukum kekekalan energi, yang dengannya diperoleh penjelasan bahwa selisih energi neutron-proton sebesar ΔE terbagi pada si “neutron kecil” dan elektron.
Dengan demikian, apabila energi kinetik elektron tinggi, maka energi kinetik “neutron kecil” bernilai rendah. Demikian pula sebaliknya.
Usul pauli yang bersifat gagasan ini kemudian dirumuskan secara pasti melalui teori peluruhan sinar beta oleh Enrico Fermi pada 1933. Teori ini mampu memberi penjelasan secara numerik mengenai waktu paruh peluruhan sinar beta dari berbagai inti atom berat dan sejumlah data pengamatan yang terkait. Dalam menyusun teorinya, Enrico Fermi, memberi nama partikel hipotesis Pauli ini sebagai neutrino yang merupakan istilah italia untuk “si neutron kecil”, dan diberi lambang partikel ν, dari abjad Yunani nu. Jadi, persamaan peluruhan sinar beta diatas seharusnya adalah: np + e- + ν. (kajian lebih lanjut menunjukkan bahwa neutrino yang terlibat disini ternyata adalah anti-neutrino). 

Minggu, 23 Oktober 2011

Hukum Gauss

  1. Fluks Medan Listrik
Fluks ( Φ ) adalah sebuah sifat dari semua medan Vektor. Fluks diturunkan dari kata latin ” Fluere ”(mengalir). Untuk permukaan tertutup didalam sebuah medan listrik, bahwa ΦE adalah Positif jika garis – garis gaya yanng menuju keluar dan negatif jika garis – garis gaya yang menuju ke dalam.
Permukaan di bagi – bagi menjadi segi empat kuadratis ΔS yang masing – masing cukup kecil sehingga dapat di anggap sebagai bidang datar. Elemen luas dapat dinyatakan sebagai sebuah vektor ΔS, yang besarnya menyatakan luas ΔS ; arah ΔS di ambil normal.
Sebuah definisi setengah kuantitatip mengenai fluks adalah :
ΦE = Є t . ΔS
          Satuan SI yang sesuai untuk ΦE adalah Newton meter² atau Coloumb ( N.m²/c).
                    Definisi fluks listrik yang didapat didalam limit diferensial. Dengan menggantikan penjumlahan terhadap permukaan dengan sebuah integral terhadap permukaan akan menghasilkan :                                                          ΦE = ф E . dS

          Contoh Soal :
  1. Hukum Coulomb
Pengertian hukum Coulomb adalah Gaya tarik atau gaya tolak dua benda yang bermuatan listrik berbanding terbalik dengan kuadrat jaraknya dan berbanding lurus dengan besar masing-masing muatan.Ditemukan oleh Charles Coulomb (1736 – 1806), dia mempelajarinya dengan menggunakan timbangan puntir hasil penemuannya. Untuk menyempurnakan penemuannya Coulomb menggunkan cara Induksi untuk memperoleh muatan dan mevariasikan besarnya muatan, sebagai contoh dari percobaan Coulomb, mula – mula muatan pada setiap bola sebesar Q0, besarnya muatan tersebut dapat dikurangi menjadi ½ Q0 dengan cara membumikan salah satu bola tersebut agar muatannya terlepas dan kemudian kedua bola dikontakkan kembali.
Hukum-coulomb.png                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F = Kq1 . q2
          F = Gaya (N)
          K = Konstanta, 8,99 X 109 N. m²/C²
          Q = Muatan ( C )
          R = Jarak ( m )

                    Gaya yang timbul akibat adanya 2buah titik muatan antara keduanya, yang besarnya sebanding dengan perkalian nilai ke 2 muatan dan berbanding terbalik dengan kuadrat jarak antara keduanya :
1.     Interaksi antara benda – benda bermuatan ( tdk hanya titik muatan ) terjadi melalui gaya tak kontak. Yang bekerja melampaui jarak Separasi.
2.     Bahwa arah pada masing – masing muatan selalu terletak sepanjang garis yang menghubungkan ke 2 muatan tersebut.
3.     Gaya yang timbul dapat membuat kedua titik tarik menarik atau saling tolak menolak tergantung nilai dari masing – masing muatan. Muatan sejenis ( bertanda sama ) → tolak menolak. Muatan berbeda → Tarik Menarik.

Contoh Soal :
          Dua muatan titik masing – masing sebesar 0.05 µC dipisahkan pada jarak 10cm. Carilah;
a.     Besarnya gaya yang dilakukan oleh satu muatan pada muatan lain
b.     Jumlah satuan muatan dasar pada masing – masing muatan.
Jawab :
a.     Dari hukum Coloumb, besarnya gaya adalah
F = K.q1.q2
   = ( 8,99 x 109 N.m²/C² ).(0,05 x 10-6 C).( 0,05 x 10-6 C)
                                             ( 0,1 m )²
   = 2,25 x 10-3 N
b.     Jumlah elektron yang diperlukan untuk menghasilkan muatan sebesar 0,05 µC diperoleh dari :
Q = Ne
N = q / e = 0,05 x 10-6 C = 3,12 x 1011
                         1,6 X 10-19 C

  1. Hukum Gaus
Hukum gaus adalah fluks listrik yang menembus suatu permukaan tertutup sama dengan jumlah muatan tertutup sama dengan jumlah muatan listrik yang dilingkupi oleh permukaan tertutup itu dibagi dengan permitivitas udara.
Persamaan Hukum Gauss
          Φ net = Є E A cos θ = q / Єo
                    Untuk kuat medan liastrik
          Φ net =  Є E A cos θ = 4π r² E → E = q / 4π r² = K. q/ r²

          1. Beda Potensial dan Potensial Listrik :
        Gaya elektrostatik bersifat konservatif
        Secara mekanik, usaha adalah

Usaha yang dilakukan untuk memindahkan sebuah muatan listrik dari A ke B adalah

          2. Interaksi listrik statik bersifat konservatif karena
       Tidak ada disipasi energi ketika partikel bermuatan berpindah dalam medan listrik.
       Potensial listrik merupakan fungsi keadaan.

Muatan listrik dipindahkan secara radial

          3. Energi Potensial medan listrik statik
Usaha pada gaya konservatif sama dengan negatif dari perubahan energi potensial, ΔPE


Persamaan ini hanya berlaku untuk medan listrik serba sama / homogen, dan dari persamaan ini kita akan mengenal konsep potensial listrik.

4. Potensial Listrik
        Beda potensial listrik antara dua titik


        Potensial listrik merupakan besaran skalar dan disebut juga tegangan.

4. Potensial Listrik Pada sebuah Titik di Sekitar Muatan Listrik

5. Analogi antara medan gravitasi dan medan gravitasi listrik
*   Fluks listrik didefinisikan sebagai jumlah/banyaknya garis-garis medan listrik yang menembus tegak lurus suatu bidang.
*   Pernyataan hukum Gauss, ”Fluks listrik yang menembus suatu permukaan tertutup sama dengan jumlah muatan listrik yang dilingkupi oleh permukaan tertutup itu dibagi dengan permitivitas udara”
*   Potensial listrik adalah perubahan energi potensial per satuan muatan yang terjadi ketika sebuah muatan uji dipindahkan dari suatu titik yang tak berhingga jauhnya ke titik yang ditanyakan.
*   Energi potensial listrik adalah usaha yang dibutuhkan sebuah muatan listrik untuk dipindahkan dari sebuah titik.
*   Kuat medan listrik dan potensial listrik saling berhubungan.